
Hybrid method for stress analysis of ®nite three-
dimensional elastic components

Xin-Lin Gaoa,*, Robert E. Rowlandsb

aDepartment of Aeronautics and Astronautics, Air Force Institute of Technology, 2950 P Street, Wright±Patterson Air Force Base,

OH 45433-7765, USA
bDepartment of Mechanical Engineering, University of Wisconsin±Madison, 1513 University Avenue, Madison, WI 53706-1572, USA

Received 15 August 1998; in revised form 30 March 1999

Abstract

A new hybrid experimental±analytical/numerical method for stress analysis of a ®nite three-dimensional elastic
component is developed in this paper. It uses the experimentally measured surface stresses and a Green's function
method to determine the displacement ®eld (and thus strain and stress ®elds) in the interior of the component. The
method is based on a displacement formulation in three-dimensional elasticity. It is ®rst demonstrated that solving

the elasticity problem can be reduced to solving two kinds of Dirichlet problems of Laplace and Poisson equations
when the surface stresses become known. These Dirichlet problems are then solved by using Green's function
method in potential theory. The solutions are derived in integral forms in terms of the Green function, which is

unique for given shape of the engineering component. Green's functions for three typical shapes of a rectangular
prism, a solid cylinder and a solid sphere are provided. A sample problem is analyzed to demonstrate applications
of the new method. The present method di�ers from the known boundary integral equation method in elasticity

theory. In addition, it can be directly applied to actual engineering components, unlike the model-based
photoelasticity method. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many problems in engineering practice involve the determination of stresses and/or displacements in
bodies that are three-dimensional. Exact analytical solutions are available only for a few three-dimen-
sional problems with simple geometries and/or loading conditions. Hence, numerical or experimental
analyses are generally required in solving such problems. Numerical solutions by themselves can be erro-
neous. On the other hand, photoelasticity is the only developed experimental method of three-dimen-
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sional stress analysis. However, this method is not very convenient to use since it typically necessitates

loading a prepared plastic model to `freeze' the stresses and subsequently analyzing slices removed from

the model.

To overcome the di�culties inherent in analytical, numerical or experimental procedures, hybrid ex-

perimental±analytical/numerical stress analysis has emerged as an alternative approach. Hybrid tech-

niques synergize the merits of individual analytical, numerical and experimental methods. One hybrid

method typically involves measuring stress, strain or displacement data on the entire boundary of an en-

gineering component in the ®rst place. Then, the governing equations in conjunction with the experimen-

tally measured boundary conditions, some of which might be super¯uous, are solved by using suitable

analytical/numerical methods to determine the stress, strain and displacement ®elds throughout the in-

terior of the component. The successful use of a hybrid method can thereby reduce the amount of

measurements required, increase the accuracy of numerical results and, at the same time, enable the

expeditious determination of the complete stress, strain and displacement distributions throughout the

component.

The use of hybrid experimental±numerical methods is quite recent. Jacob's dissertation appears

to be the ®rst systematic development of three-dimensional hybrid stress analysis (Jacob, 1976).

The major part of this work was reported in Chandrashekhara and Jacob (1977a, 1977b). Barish-

polsky (1980, 1981) presented a somewhat di�erent formulation of this hybrid method. He used

generalized curvilinear coordinates in an attempt to make the method applicable for a three-dimen-

sional body of arbitrary shape. Rao (1982) extended the work of Chandrashekhara and Jacob

(1977a, 1977b) further to include body forces and thermal loads. In all of these studies mentioned

above a photoelastic model and the stress freezing technique are used to determine surface stresses

at discrete points, and a ®nite di�erence method is employed to solve the Beltrami±Michell com-

patibility equations. Although serious e�orts were made by the authors to justify/interpret their nu-

merical results, there exists a fundamental concern with their approach. These authors treated the

six Beltrami±Michell compatibility equations as independent expressions to solve for the six

unknown stress components. This is conceptually incomplete because the six second-order compat-

ibility equations are only equivalent to three independent fourth-order partial di�erential equations

(see a proof provided in Appendix A). These three fourth-order equations, together with the three

equilibrium equations, consist of the six independent equations to solve for the six unknown stress

components (see, for example, Chou and Pagano, 1967, p.79). Hence, such analyses warrant

strengthening.

Laermann (1984a, 1984b, 1990) has proposed an alternative hybrid procedure utilizing holographically

measured displacements at discrete points on the surface and an approximate method based on Taylor's

series to solve the Navier equations for the displacements at interior points of a three-dimensional elastic

component. The accuracy of this method could probably be improved by not truncating the series

involved after the fourth term.

In this paper, a new hybrid method is developed. It uses the measured surface stresses and a

Green's function method to determine the displacement ®eld (and thus strain and stress ®elds) in the

interior of a three-dimensional elastic component. In Section 2, the basic governing equations and the

two formulation methods in three-dimensional elasticity are reviewed and compared, which leads to

the adoption of a displacement approach in formulating the new method. Section 3 presents the for-

mulation of the new hybrid method. The formulation provided is general and valid for ®nite three-

dimensional domains of arbitrary shape. In Section 4, the sample problem of an elastic cube subjected

to hydrostatic pressure is analyzed to demonstrate applications of the new method. A summary is pro-

vided in Section 5.
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2. Review of governing equations in elasticity

The basic governing equations of the three-dimensional linear elasticity in the usual Cartesian coordi-
nates {x1, x2, x3}0{x, y, z } are the equilibrium equations (in the absence of body forces)

sij,j � 0, �1�
the constitutive equations

sij � 2meij � lekkdij, �2�
the geometrical (strain±displacement) equations

eij � 1

2
�ui,j � uj,i � �3�

and the compatibility equations

eik,jj ÿ ejk,ij � ejj,ik ÿ eij,jk � 0: �4�
Eq. (2) may also be written as

eij � 1

E
��1� n�sij ÿ nSdij �, �5�

where

S � skk � sxx � syy � szz �6�
is the ®rst stress invariant. In the above equations, sij, eij and ui are, respectively, the Cartesian stress,
strain and displacement components; dij is the Kronecker delta; E and n are Young's modulus and Pois-
son's ratio, respectively; and m and l are the Lame constants, with

m � E

2�1� n� �7a�

and

l � 2nm
1ÿ 2n

: �7b�

As usual, Einstein's summation convention applies and the indices i, j, k, etc. range over {1, 2, 3}.
Note that in a stress formulation Eqs. (1), (4) and (5) are essential while, in a displacement formu-

lation, Eqs. (1)±(3) must be satis®ed.
First, we consider a stress formulation. Using Eqs. (1) and (5) in Eq. (4) and carrying out the index

operations will result in (see, for example, Chou and Pagano, 1967)

Dsij � 1

1� n
S,ij � 0, �8�

where D is the Laplace operator. The expressions given by Eq. (8), which represent the six compatibility
equations in terms of stress, are known as the Beltrami±Michell compatibility equations. Since the six
equations listed in Eq. (4) are equivalent to only three independent fourth-order equations (see a proof
in Appendix A) and the operations that lead to Eq. (8) from Eq. (4) are linear, it follows that the six
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equations given by Eq. (8) amount to only three independent fourth-order equations. That is, the Bel-
trami±Michell compatibility equations given by Eq. (8) alone are not su�cient to solve for the six
unknown stress components. It is therefore believed that those analyses by Chandrashekhara and Jacob
(1977a, 1977b) and their followers are unfortunately incorrect, as mentioned in Section 1. The six com-
patibility equations given by Eq. (8) (or their three fourth-order equivalents) and the three equilibrium
equations listed in Eq. (1), in conjunction with suitable stress boundary conditions, de®ne the boundary-
value problem to solve for the six stress components throughout a three-dimensional elastic member. In
some special cases, this boundary-value problem may be exactly solved by using a stress function
method (see, for example, Chou and Pagano, 1967, pp. 277±282; Little, 1973, pp. 317±320). However, it
is very di�cult to solve such problems analytically if they involve ®nite geometry.

We now examine a displacement formulation. Inserting Eqs. (2) and (3) into Eq. (1) and using Eqs.
(7a) and (7b) will yield

Dui � 1

1ÿ 2n
e,i � 0, �9�

where

e � ekk � exx � eyy � ezz � uk,k �10�

is the ®rst strain invariant. The expressions given by Eq. (9), which represent the three equilibrium
equations in terms of displacement, are known as the Navier equations. Taking the divergence of Eq. (9)
and using Eq. (10) will give

De � 0: �11�
Clearly, Eq. (11) is a necessary condition for Eq. (9) and hence is always true for any three-dimensional
elastic component in equilibrium. Moreover, taking the trace of Eq. (2) and invoking Eqs. (6), (7) and
(10) will lead to

S � E

1ÿ 2n
e: �12�

Substituting Eq. (12) into Eq. (11) then gives

DS � 0: �13�
Note that Eq. (11) is a Laplace equation. Once e has been determined, the Navier equations given by

Eq. (9) will become three decoupled Poisson's equations. Hence, if the displacement vector (and thus e
from Eq. (10)) can be determined on the entire surface, then Eqs. (9) and (11) can be solved to obtain
the interior displacement ®eld using a variety of methods in potential theory, a well-studied discipline in
applied mathematics (see, for example, Kellogg, 1953; Sneddon, 1966).

Finally, note that the system of Eqs. (1) and (8) can be written in a tensorial form as

r � s � 0, �14a�

Ds� 1

1� n
r�rS � � 0, �14b�

where s is the stress tensor, H is the gradient operator and H� is the divergence operator. Similarly, Eq.
(9) can be written as
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Du� 1

1ÿ 2n
re � 0, �15�

where u is the displacement vector. Eqs. (14a), (14b) and (15) are coordinate-free and valid for any cur-
vilinear coordinate system, while Eqs. (1), (8) and (9) are only applicable for the Cartesian coordinate
system {x1, x2, x3}0{x, y, z }.

Eqs. (14a) and (14b) represent the most general form of the governing equations of the three-dimen-
sional elasticity in a stress formulation, and Eq. (15) in a displacement formulation. A comparison
shows that the system de®ned in Eq. (15) is much easier to solve than that de®ned in Eqs. (14a) and
(14b) if one can determine u on the entire surface of the body and decouple the three equations in Eq.
(15). This motivates us to adopt a displacement formulation in the next section.

3. New hybrid method

In a displacement formulation using the Cartesian coordinates {x1, x2, x3}, one only needs to solve
Eq. (9) subject to suitable boundary conditions. Since Eq. (11), as a necessary condition of Eq. (9),
always holds, one can solve it to obtain e throughout a loaded three-dimensional elastic component in
the ®rst place. This will decouple the three Navier equations given by Eq. (9) and convert them into
three independent Poisson's equations, which are much easier to solve.

3.1. Determination of the ®rst strain invariant e

Note that e can be easily obtained from Eq. (12) once S has been determined from Eq. (13) and the
associated boundary conditions.

Since it has been proven that the elasticity solution for any determinate problem is unique (see, for
example, Sokolniko�, 1956; Chou and Pagano, 1967, pp. 82±84), Eq. (13) must also have a unique sol-
ution. From potential theory, Laplace's and Poisson's equations subject to Dirichlet boundary con-
ditions (as su�cient conditions) have unique solutions. Therefore, for Eq. (13) to have a unique
solution, it is su�cient to have the ®rst stress invariant, S, known on the entire surface. However, Cau-
chy's principle of stress (see, for example, Malvern, 1969, pp. 64±119) enables one to determine only
three stress components (one normal stress and two shear stresses) from the known tractions on any
part of the surface. Hence, an appropriate experimental measurement is required in the ®rst place to
obtain the other three surface stress components.

Current developments (see, for example, Barone et al., 1998) of a new experimental stress analysis
method which combines the thermal stress analysis (TSA) (see, for example, Rauch and Rowlands,
1993) and the birefringent coating (see, for example, Zandman et al., 1977; Rowlands, 1981; Lesniak et
al., 1997) techniques will enable the determination of all six stress components on the surface of an elas-
tic solid. Then, Eq. (13) and the experimentally measured S on the surface form the standard Dirichlet
problem:

DS � 0 in O, �16a�

S � S� on G, �16b�
where O denotes the interior of the three-dimensional elastic member, G the surface of the member; and
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S� is the measured distribution of S on G. This boundary-value problem can be solved using a Green's
function method (see, for example, Stakgold, 1979) as follows.

Note that Green's function associated with the Dirichlet problem (16a) and (16b) is de®ned by the
boundary-value problem:

DG � d�xÿ x� in O, �17a�

G � 0 on G, �17b�
where G0G(x, x) is Green's function, d is the Dirac delta function, x=xiei is the position vector of a
typical point in O, and x=xiei is the location of the source point.

Using Green's second identity (see, for example, Flanigan, 1972, p. 62) for this case:�
O
�SDGÿ GDS �dVx �

�
G

 
S
@G

@nx
ÿ G

@S

@nx

!
dAx �18�

gives, after substituting Eqs. (16a), (16b), (17a) and (17b) and interchanging the roles of x and x,

S�x� �
�
G
S��x�@G�x,x�

@nx
dAx �19�

as the unique solution of Eqs. (16a) and (16b), where the subscript x denotes integration with respect to
x=xiei. Substituting Eq. (19) into Eq. (12) then yields

e�x� � 1ÿ 2n
E

�
G
S��x�@G�x,x�

@nx
dAx �20�

as the ®rst strain invariant at any point x in O in terms of Green's function G(x, x) de®ned by Eqs.
(17a) and (17b).

Since both e and S are invariant under coordinate transformations, the solution given by Eq. (20) is
valid for any coordinate system.

3.2. Solution for the displacement vector u

Note that once e(x) is known, the three equations given by Eq. (9) become decoupled and hence can
be solved separately.

From Eq. (5), the strain components on the surface G, e�ij, are related to the measured surface stress
components s�ij by

e�ij �
1

E

��1� n�s�ij ÿ nS�dij
�
: �21�

Since e�ij are obtained directly from the physically measured s�ij, they must automatically satisfy the com-
patibility equations given by Eq. (4). Hence, the displacement components on the surface can be deter-
mined from e�ij as (see, for example, Love, 1944, pp. 222±223; Malvern, 1969, pp. 188±192)

u�i �x� � u�i �x0� �
�
xj ÿ x0

j

�
o�ij�x0� �

�
C

�
e�ij � �xk ÿ xk�

�
@e�ji
@xk
ÿ @e

�
kj

@xi

��
dxj, �22�
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where x and x 0 are, respectively, a typical (arbitrary) point and a chosen (convenient) point on the sur-
face G, C is an arbitrary (convenient) path connecting x and x 0 on G, and o�ij are the components of the
rotation tensor. Clearly, the ®rst two terms in Eq. (22) represent the e�ects of a rigid-body motion and
will not contribute to the stress and strain ®elds. Hence, they can be suppressed without violating any
(stress) boundary conditions and the stress and strain distributions. Then, the surface displacement com-
ponents u�i will be solely determined from e�ij: Eq. (22) provides the general formulae to determine u�i
from the surface strains e�ij, which can be used for all cases. In practice, however, the determination of u�i
from known e�ij can often be carried out more conveniently by direct integration rather than making
speci®c use of Eq. (22) (see, for example, Malvern, 1969, pp. 190±192; Gao, 1999), since the integrability
of each strain±displacement relation is guaranteed by the fact that the compatibility equations are satis-
®ed by e�ij:

Knowing both e(x) and u�i (from the measured surface stresses), one then obtains from Eq. (9) and
the boundary conditions that

Dui � ÿ 1

1ÿ 2n
e,i in O, �23a�

ui � u�i on G: �23b�
These are now three separate Dirichlet problems of Poisson's equation to solve for ui (i={1, 2, 3}). Note
that Eqs. (23a) and (23b) can be decomposed into the following two boundary-value problems:

Dui � ÿ 1

1ÿ 2n
e,i in O, �24a�

ui � 0 on G �24b�
and

Dui � 0 in O, �25a�

ui � u�i on G: �25b�
Following the same procedures as those used in solving Eqs. (16a) and (16b), the solution of Eqs.

(25a) and (25b) is obtained as

uII
i �x� �

�
G
u�i �x�

@G�x,x�
@nx

dAx: �26�

Using Green's second identity and Eqs. (24a), (24b), (17a) and (17b) will result in

uI
i�x� � ÿ

1

1ÿ 2n

�
O
G�x,x�@e�x�

@xi
dVx �27�

as the solution of the ®rst boundary-value problem de®ned by Eqs. (24a) and (24b). Therefore, it follows
from the principle of superposition that the solution of Eqs. (23a) and (23b) is

ui�x� � uI
i�x� � uII

i �x� � ÿ
1

1ÿ 2n

�
O
G�x,x�@e�x�

@xi
dVx �

�
G
u�i �x�

@G�x,x�
@nx

dAx: �28�
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This gives the displacement components at any point x in O in terms of Green's function G(x, x) de®ned
by Eqs. (17a) and (17b). By using Eq. (28), the strain and stress components at any point x in O can
then be easily calculated from Eqs. (3) and (2), respectively.

In a tensorial form, Eq. (28) becomes

u�x� � ÿ 1

1ÿ 2n

�
O
G�x,x�rxe�x�dVx �

�
G
u��x�@G�x,x�

@nx
dAx, �29�

which is applicable for any coordinate system.
It is now clear that the three-dimensional elasticity problem de®ned in the ®nite domain O[G, which

is generic, will be completely solved once Green's function de®ned by Eqs. (17a) and (17b) has become
available.

3.3. Green's function G(x, x) for a ®nite three-dimensional domain

3.3.1. Determination of G(x, xx) from Green's function in unbounded 3-D space
Let

G � g� b, �30�

where b(x) is a function yet unknown, and g(x, x) is the Green function in the unbounded three-dimen-
sional space given by (see, for example, Stakgold, 1979)

g � ÿ 1

4p
1

jxÿ xj �31�

and satisfying

Dg � d�xÿ x�: �32�

Using Eqs. (30) and (32) in Eqs. (17a) and (17b) then leads to

Db � 0 in O,

b � ÿgjG on G: �33�

The solution of this boundary-value problem gives b(x), an harmonic function. Substituting this function
and Eq. (31) into Eq. (30) then yields Green's function G(x, x) for the ®nite domain O[G.

3.3.2. Determination of G(x, x) from solving simple Dirichlet problems of Poisson's equation
Consider the Dirichlet problem with homogeneous boundary conditions:

Df � F�x� in O,
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f � 0 on G, �34�

where f(x) is the unknown function, and F(x) is a given continuous function. Using Green's second iden-
tity and Eqs. (17a), (17b) and (34) gives

f �x� �
�
O
G�x,x�F�x�dVx �35�

as the unique solution of Eq. (34). Hence, if one can solve Eq. (34) and express its solution in the form
of Eq. (35), then Green's function G(x, x) can be directly read o� from Eq. (35). This is a convenient

Fig. 1. Rectangular prism.

Fig. 2. Solid cylinder.
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method to derive Green's functions for standard three-dimensional domains such as parallelepipeds,
cylinders and spheres by using the separation-of-variable method and a very simple function F(x).

3.3.3. Green's function for a rectangular prism
For the prism with width a, length b and height c, as shown in Fig. 1, it can be shown (see Appendix

B) that Green's function de®ned by Eqs. (17a) and (17b) is

G�x,x� � ÿ8
X1
m�1

X1
n�1

X1
p�1

1

p2abc

�
m2

a2
� n2

b2
� p2

c2

� sin
mpx1

a
sin

mpx1
a

sin
npx2

b
sin

npx2
b

� sin
ppx3

c
sin

ppx3
c

, �36�

where x=(x1, x2, x3) is a typical point in the prism, and x=(x1, x2, x3) is the source point.

3.3.4. Green's function for a solid cylinder
For the solid cylinder of radius R and length L, as shown in Fig. 2, Green's function de®ned by Eqs.

(17a) and (17b) is obtained (see Appendix B) as

G�x,x� � ÿ
X1
m�1

X1
n�1

2

pR2L

"�
bm
R

�2

�
�
np
L

�2
# J0

�
bm

r

R

�
J0

�
bm

r 0

R

�
J 2

1�bm�
sin

npx3

L
sin

npx3
L

, �37�

where x=rey+x3e3 is a typical point in the cylinder, x=r 'ey+x3e3 is the source point, J0 and J1 are, re-
spectively, the ®rst-kind Bessel functions of order zero and one, and bm (m = 1, 2, 3,...) are the dimen-
sionless eigenvalues (roots) found from J0(bm )=0.

3.3.5. Green's function for a solid sphere
For the solid sphere of radius R, as shown in Fig. 3, Green's function de®ned by Eqs. (17a) and (17b)

Fig. 3. Solid sphere.
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can be shown to be (see Appendix B)

G�x,x� � ÿ
X1
m�1

R

2p3rr 0m2
sin

mpr
R

sin
mpr 0

R
, �38�

where x=reR is a typical point in the sphere, and x=r 'eR is the source point.
Since these three standard domains and their combinations represent many load-carrying engineering

components and structures, the Green functions provided here should be able to account for many im-
portant practical cases.

4. An example

A sample problem is analyzed in this section to illustrate the hybrid method developed in the preced-
ing section. Since the details of the new experimental stress analysis method mentioned in Section 3.1
are still under development and no measured full-®eld, three-dimensional surface stress data are avail-
able yet, the sample problem to be analyzed here is chosen in such a way that its closed-form solution is
known and the needed full-®eld surface data can be easily obtained from the solution.

Consider the problem of an elastic cube with side length a and subjected to hydrostatic pressure q, as
illustrated in Fig. 4. The exact solution of this problem is known to be

s11 � s22 � s33 � ÿq, s12 � s23 � s31 � 0 �39�

at any x $O[G. It then follows from Eqs. (6) and (39) that

S��x� � ÿ3q �40�

on the entire surface (i.e., for all x $ G ). Also, using Eq. (39) in Eq. (5) yields

Fig. 4. Cube subjected to hydrostatic pressure.
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e11 � e22 � e33 � ÿq�1ÿ 2n�
E

, e12 � e23 � e31 � 0 �41�

at any x $ O [ G. It can be shown (see Appendix C) that the three displacements (with the rigid-body
motion suppressed) can be determined from the six strain components listed in Eq. (41) as

u1�x� � ÿq�1ÿ 2n�
E

x1, u2�x� � ÿq�1ÿ 2n�
E

x2, u3�x� � ÿq�1ÿ 2n�
E

x3 �42�

at any point x $O[G. In particular, on the surface (six faces) of the cube, Eq. (42) gives

u1 � 0, u2 � ÿq�1ÿ 2n�
E

x2, u3 � ÿq�1ÿ 2n�
E

x3 on x1 � 0;

u1 � ÿq�1ÿ 2n�
E

a, u2 � ÿq�1ÿ 2n�
E

x2, u3 � ÿq�1ÿ 2n�
E

x3 on x1 � a;

u1 � ÿq�1ÿ 2n�
E

x1, u2 � 0, u3 � ÿq�1ÿ 2n�
E

x3 on x2 � 0;

u1 � ÿq�1ÿ 2n�
E

x1, u2 � ÿq�1ÿ 2n�
E

a, u3 � ÿq�1ÿ 2n�
E

x3 on x2 � a;

u1 � ÿq�1ÿ 2n�
E

x1, u2 � ÿq�1ÿ 2n�
E

x2, u3 � 0 on x3 � 0;

u1 � ÿq�1ÿ 2n�
E

x1, u2 � ÿq�1ÿ 2n�
E

x2, u3 � ÿq�1ÿ 2n�
E

a on x3 � a: �43�

Next, we will apply the hybrid method developed in Section 3 to demonstrate that the displacements in
the interior of the cube, as given by Eq. (42), are obtainable from the surface data listed in Eqs. (40)
and (43) and the Green function given by Eq. (36).

Note that from the expression of Green's function given by Eq. (36) it follows, for the present case
with a=b=c, that
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Using Eqs. (40) and (44) in Eq. (20) and carrying out the algebra will lead to
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at any x $O.
Note that from the Fourier analysis,
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Then, using Eq. (46) in Eq. (45) yields
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Substituting Eqs. (36), (43), (44) and (47) into Eq. (28) results in, after the algebra,
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at any x $O. From the Fourier analysis,
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With the substitution of Eqs. (46) and (49), Eq. (48) then reduces to

ui�x� � ÿq�1ÿ 2n�
E

xi, 8x 2 O: �50�

Clearly, the expressions of the three displacement components given by Eq. (50) at any point in the in-
terior of the cube are identical to those listed in Eq. (42). This concludes the demonstration of the new
hybrid method.

It is evident that the procedure used in analyzing the sample problem above is equally applicable to
all other bodies that have the shape of a rectangular prism but may have very di�erent surface stress
data and sizes, as the Green function listed in Eq. (36) and the general formulas given by Eqs. (20) and
(28) remain the same. This conclusion can also be extended to other three-dimensional bodies with
di�erent shapes (and thus di�erent Green's functions), including solid cylinders and spheres whose
Green functions are also provided in Section 3.

5. Summary

A new hybrid experimental±analytical/numerical method for stress analysis of a loaded ®nite three-
dimensional elastic component is developed. This method uses experimentally measured surface stresses
to analytically/numerically calculate the displacements (and thus strains and stresses) throughout the in-
terior of the component. Assuming that the complete surface stress data could be obtained experimen-
tally using combined thermal stress analysis and birefringent coating techniques, this paper focuses on
developing the procedures for determining the displacements inside the elastic component from the
known surface stresses.

The fact that the existing stress-based hybrid method is unfortunately de®cient and the correct use of
a stress formulation method requires solving the six Beltrami±Michell compatibility equations and the
three equilibrium equations simultaneously motivates us to adopt a displacement formulation in devel-
oping the new hybrid method. As a result, only the three (independent) Navier equations need to be
solved for the three unknown displacements. The ®rst stress invariant (and thus the ®rst strain invariant)
satisfying Laplace's equation can be determined throughout the interior of the component from known
surface stresses. This decouples the three Navier equations and converts them into three separate Pois-
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son's equations. It then becomes possible to use standard methods in potential theory to solve elasticity
problems involving ®nite dimensions. Green's function method is employed to solve the relevant Laplace
and Poisson equations. The solutions of all these four equations are derived in integral forms in terms
of the same Green function, which can be uniquely determined for given shape of the engineering com-
ponent. The Green functions for three standard shapes of a rectangular prism, a solid cylinder and a
solid sphere are provided here, which can represent many important cases. The general procedures given
in Section 3.3 may be followed to ®nd Green's functions for other less standard ®nite domains (shapes)
in an approximate manner.

The sample problem of an elastic cube subjected to hydrostatic pressure is analyzed to demonstrate
applications of the new method. The procedure used in this analysis is illustrative for other cases that
may involve di�erent shapes and sizes, and may have very di�erent surface stress data.

The present hybrid method enables the determination of interior displacements (and thus stresses) at
any desired locations in a loaded three-dimensional component from measured surface stresses. The for-
mulas derived are general and can be applied to ®nite three-dimensional domains of arbitrary shape.
Inevitably, numerical integrations are necessary in applications to three-dimensional problems with com-
plicated shapes.

Naturally, the formulae derived here can also be directly applied to calculate the displacements in the
interior of an elastic component from measured surface displacements, as is evident from the formu-
lation in Section 3. In fact, it is easier to start from measured surface displacements than from measured
surface stresses, as the step of determining the surface displacements from the known surface stresses
will be eliminated. Unfortunately, the experimental determination of the full-®eld displacements over the
surface of a three-dimensional component is not trivial.

Finally, it should be pointed out that this hybrid method di�ers greatly from the boundary integral
equation method in elasticity, where the fundamental solution for an unbounded three-dimensional elas-
tic body has to be applied (see, for example, Kythe, 1995, pp. 157±167). Also, this method is non-
destructive and is conducted on the actual engineering component, unlike the model-based stress freezing
technique in three-dimensional photoelasticity.
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Appendix A

Since we have not been able to locate any explicit proof of the well-documented fact that the six com-
patibility equations in terms of strain in three-dimensional elasticity are equivalent to three independent
fourth-order equations (see, for example, Chou and Pagano, 1967), a proof is provided below in this
appendix.

For illustration, only the Cartesian components are considered here. Note that the six Saint-Venant
compatibility equations in the Cartesian coordinate system {x1, x2, x3}0{x, y, z } are (see, for example,
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Malvern, 1969, p.186)
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Taking @2/@z 2 on Eq. (A.1a), @2/@x 2 on Eq. (A.1b), @2/@y 2 on Eq. (A.1c), @2/(@y@z ) on Eq. (A.1d), @2/
(@z@x ) on Eq. (A.1e) and @2/(@x@y ) on Eq. (A.1f), respectively, will yield
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Adding Eq. (A.2d) to Eq. (A.2e) gives
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which is identical to Eq. (A.2a). Similarly, adding Eq. (A.2e) to Eq. (A.2f) leads to Eq. (A.2b), and add-
ing Eq. (A.2f) to Eq. (A.2d) yields Eq. (A.2c). Hence, we have shown that Eqs. (A.2a), (A.2b) and
(A.2c) are easily derivable from Eqs. (A.2d), (A.2e) and (A.2f). Next, we show that the converse is also
true.

Adding Eq. (A.2a) to Eq. (A.2c) and then subtracting Eq. (A.2b) will yield

2
@4exx
@y2@z2

� @4gxy
@x@y@z2

� @4gzx
@z@x@y2

ÿ @4gyz
@y@z@x2
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which is just Eq. (A.2d). Similarly, adding Eq. (A.2a) to Eq. (A.2b) and then subtracting Eq. (A.2c) will
give Eq. (A.2e), and adding Eq. (A.2b) to Eq. (A.2c) and then subtracting Eq. (A.2a) will lead to Eq.
(A.2f). This shows that Eqs. (A.2d), (A.2e) and (A.2f) are readily obtainable from Eqs. (A.2a), (A.2b)
and (A.2c).

It is therefore concluded that the ®rst three equations in Eqs. (A.2a)±(A.2f) are equivalent to the last
three equations in Eqs. (A.2a)±(A.2f). That is, there are only three independent equations among the six
equations given by Eqs. (A.2a)±(A.2f). Since these six equations follow directly from Eqs. (A.1a)±(A.1f)
after di�erentiations which are linear operations, it can be further concluded that the six compatibility
equations given by Eqs. (A.1a)±(A.1f) are not independent and are equivalent to three independent
fourth-order equations, i.e., Eqs. (A.2a), (A.2b) and (A.2c) or Eqs. (A.2d), (A.2e) and (A.2f). This ends
our proof of the fact stated at the beginning of the appendix.

This fact, in turn, explains why the six Beltrami±Michell compatibility equations (i.e., the compatibil-
ity equations in terms of stress), which are converted from the six strain compatibility equations given
by Eqs. (A.1a)±(A.1f) after some linear operations including the substitutions of the constitutive
equations (and equilibrium equations), alone are insu�cient, and the three equilibrium equations are
required additionally, to solve for the six unknown stress components. How to solve these nine
equations simultaneously should be, and has been, the starting point of any serious discussion on solving
three-dimensional elasticity problems via a stress formulation method (see, for example, Chou and
Pagano, 1967, pp. 277±282; Little, 1973, pp. 317±320). Unfortunately, and notwithstanding the see-
mingly good agreement of their results, the previous investigators mentioned in Section 1 only employed
the six (dependent) Beltrami±Michell compatibility equations and omitted to enforce the three equili-
brium equations in their e�orts to develop a stress-based hybrid method of three-dimensional stress
analysis. The enormous di�culties associated with simultaneously solving the three equilibrium
equations and the six compatibility equations (or their three fourth-order equivalents) in a general con-
text motivate us to take the other approach in developing a hybrid method of generic nature. That is,
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we embark on solving the three Navior equations, which are the only governing equations in a displace-
ment formulation, for the interior displacement ®eld by using a Green's function method in potential
theory. The required boundary data on displacements are determinable from the measured surface stres-
ses through a suitable process involving integrations.

Appendix B

Since the derivations of the three Green functions provided in Section 3 are lengthy, we will, instead,
present the proofs of their correctness in this appendix.

B.1. Proof of Green's function for a rectangular prism

To prove the correctness of the Green function given by Eq. (36) for the rectangular prism, one only
needs to demonstrate that Eqs. (17a) and (17b) are identically satis®ed by Eq. (36).

Note that from Eq. (36), it follows that
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From the distribution theory (see, for example, Stakgold, 1979; Barton, 1989),
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Using Eq. (B.3) in Eq. (B.2) then gives

DG � d�x1 ÿ x1�d�x2 ÿ x2�d�x3 ÿ x3� � d�xÿ x�, 8x 2 O: �B:4�

This means that Eq. (17a) is identically satis®ed by the Green function given in Eq. (36). Next, note that
from Eq. (36),

Gjx 1�0 � 0 � Gjx 1�a,

Gjx 2�0 � 0 � Gjx 2�b,

Gjx 3�0 � 0 � Gjx 3�c: �B:5�

That is, the Green function given by Eq. (36) also identically meets the boundary conditions listed in
Eq. (17b). It is therefore concluded that the Green function for the rectangular prism given by Eq. (36)
is indeed correct.

B.2. Proof of Green's function for a solid cylinder

In this case, one only needs to show that Eqs. (17a) and (17b) are identically satis®ed by the Green
function given in Eq. (37).

Note that from Eq. (37) it follows that
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By de®nition, J0(x ) must satisfy the Bessel equation of order 0 (see, for example, Andrews, 1992,
p.243):
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Using Eq. (B.8) in Eq. (B.7) then gives
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Next, note that J0(x ) also satis®es the following orthogonality relations (see, for example, Andrews,
1992, pp. 267±273):
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where km and kn are dimensionless distinct roots of J0(kb )=0, and b is some positive real number. By
using Eq. (B.10), d(rÿr ') can then be expanded as a Fourier±Bessel series of the following form:
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With the help of Eqs. (B.3) and (B.11), Eq. (B.9) now becomes

DG � 1

2pr 0
d�rÿ r 0 �d�x3 ÿ x3� � d�x1 ÿ x1�d�x2 ÿ x2�d�x3 ÿ x3� � d�xÿ x�, 8x 2 O, �B:11�

where the second equality is based on one property of the Dirac delta function (see, for example, Bar-
ton, 1989, pp. 7±37). This shows that the Green function given by Eq. (37) does satisfy Eq. (17a) identi-
cally. Next, note that from Eq. (37),

Gjr�R � 0, Gjx 3�0 � 0 � Gjx 3�L, �B:13�

where use has been made of the fact J0(bm )=0 in reaching the ®rst equality. Eq. (B.13) says that the
Green function given by Eq. (37) also identically meets the boundary conditions listed in Eq. (17b).
Hence, we have proven that the Green function given by Eq. (37) for the solid cylinder is indeed correct.

B.3. Proof of Green's function for a solid sphere

Similarly, in this case one only needs to prove that Eqs. (17a) and (17b) are identically satis®ed by the
Green function given in Eq. (38).

Note that from Eq. (38) it follows that
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With the help of Eq. (B.3), Eq. (B.15) reduces to

DG � 1
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d�rÿ r 0 � � d�rÿ r 0 � � d�xÿ x�, 8x 2 O, �B:16�

where the second equality is based on one property of the Dirac delta function (see, for example, Bar-
ton, 1989, pp. 7±37). Eq. (B.16) shows that the Green function given by Eq. (38) does satisfy Eq. (17a)
identically. Next, note that from Eq. (38),

Gjr�R � 0: �B:17�

That is, the Green function given by Eq. (38) also identically meets the boundary conditions listed in
Eq. (17b). Therefore, it is concluded that the Green function given by Eq. (38) for the solid sphere is
indeed correct.
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Appendix C

Since the determination of the surface displacements from the measured surface stresses (and thus the
surface strains by Hooke's law) is an important step in the new hybrid method, the derivation of the
three displacement components given by Eq. (42) from the six strain components listed in Eq. (41) is
recorded in details in this appendix to illustrate the procedure.

Substituting Eq. (41) into Eq. (3) leads to
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at any x $ O [ G. Since the strain components given by Eq. (41) identically satisfy the compatibility
equations listed in Eq. (4), it is guaranteed that the six equations in Eqs. (C.1a)±(C.1f) can be solved to
obtain the three displacements ui(x), as discussed at the beginning of Section 3.2. We will use the direct
integration approach mentioned there (see also Gao, 1999 for one example using the polar coordinate
system) in our derivation to follow.

From Eq. (C.1a), it follows that
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where f(x2, x3) is a yet-unknown function. Using Eq. (C.2) in Eqs. (C.1d) and (C.1e) gives
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where g(x2, x3) and h(x2, x3) are two additional unknown functions. Next, substituting Eq. (C.3) into
Eqs. (C.1b) and (C.1c) yields
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at any x $O[G, which imply that
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From Eqs. (C.5c) and (C.5d), it follows that

g�x2,x3� � ÿq�1ÿ 2n�
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where G(x3) and H(x2) are two yet-unknown functions. Using Eq. (C.6) in Eq. (C.3) gives
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Inserting Eq. (C.7) into Eq. (C.1f), the only remaining equation in Eqs. (C.1a)±(C.1f) yields
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at any x0(x1, x2, x3) $O[G, which suggests that
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and
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with C being a constant. From Eqs. (C.5a), (C.5b) and (C.9a), it immediately follows that

f �x2,x3� � Dx2 � Fx3 � K, �C:10�
and from Eqs. (C.9b,c) that

G�x3� � Cx3 �M, H�x2� � ÿCx2 �N, �C:11�
where D, F, K, M and N are additional constants. Using Eqs. (C.10) and (C.11) in Eqs. (C.2) and (C.7)
then gives
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as the displacements at any point x $ O [ G. Clearly, the last three terms in each of the three displace-
ments given by Eq. (C.12) represent the contributions of a rigid-body motion. These terms have no
e�ects on the strain and stress distributions (see, for example, Chou and Pagano, 1967, pp. 45±48) and
can therefore be suppressed without violating any stress boundary conditions. For example, if we assume
that the origin O(0,0,0), which happens to be a point on the surface, is ®xed, i.e., u1=u2=u3=0 at
x1=x2=x3=0, then it follows from Eq. (C.12) that
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K �M � N � 0: �C:13�
This condition suppresses all possible rigid-body translations of the cube. Next, if we impose that the
cube does not have any rigid-body rotation, i.e.,
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then it follows from Eqs. (C.12) and (C.14) that

C � D � F � 0: �C:15�
The substitution of Eqs. (C.13) and (C.15) into Eq. (C.12) ®nally yields
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as the displacement components at any point x $O[G with the rigid-body motion suppressed, which are
the very expressions listed in Eq. (42).
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